MINI MINI MANI MO
3
  \(                 @   s   d Z ddlmZmZ dddddgZG dd ded	ZG d
d deZeje G dd deZ	e	je
 G dd de	ZG d
d deZeje
 dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
TODO: Fill out more detailed documentation on the operators.    )ABCMetaabstractmethodNumberComplexRealRationalIntegralc               @   s   e Zd ZdZf ZdZdS )r   zAll numbers inherit from this class.
    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    N)__name__
__module____qualname____doc__	__slots____hash__ r   r   /usr/lib64/python3.6/numbers.pyr      s   )	metaclassc               @   s   e Zd ZdZf Zedd Zdd Zeedd Z	eedd	 Z
ed
d Zedd
 Zedd Z
edd Zdd Zdd Zedd Zedd Zedd Zedd Zedd Zed d! Zed"d# Zed$d% Zed&d' Zd(S ))r   aa  Complex defines the operations that work on the builtin complex type.
    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.
    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    c             C   s   dS )z<Return a builtin complex instance. Called for complex(self).Nr   )selfr   r   r   __complex__-   s    zComplex.__complex__c             C   s   | dkS )z)True if self != 0. Called for bool(self).r   r   )r   r   r   r   __bool__1   s    zComplex.__bool__c             C   s   t dS )zXRetrieve the real component of this number.
        This should subclass Real.
        N)NotImplementedError)r   r   r   r   real5   s    zComplex.realc             C   s   t dS )z]Retrieve the imaginary component of this number.
        This should subclass Real.
        N)r   )r   r   r   r   imag>