MINI MINI MANI MO

Path : /usr/lib64/python3.6/lib-dynload/
File Upload :
Current File : //usr/lib64/python3.6/lib-dynload/math.cpython-36m-x86_64-linux-gnu.so

ELF>0+@X@8@   x   $$Ptd,,QtdRtd  GNUIy
!z
WȱDW\_GX[GBEEG|qX
T幍V.%HH3 [)w1IFTY'tBdl$Gf^ B)KH>*xudl
a }4r|8 G5R"=9">U/3=` Cw?7h ` |	8'
|%<h|__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyFloat_AsDoublePyFloat_FromDoublePyErr_Occurred__errno_locationPyExc_ValueErrorPyErr_SetStringPyExc_OverflowErrorPyErr_SetFromErrnoPyArg_UnpackTuple__isinf__finitefmod__isnan__stack_chk_failpowmodfPy_BuildValuelog2log10log_Py_log1pfabsatanasinroundfloorPyBool_FromLongPyArg_ParseTupleAndKeywords_Py_TrueStruct_Py_FalseStructhypotPyArg_ParseTuplePyNumber_Index_PyLong_GCDPyObject_GetIterPyIter_NextPyMem_ReallocPyMem_MallocmemcpyPyExc_MemoryErrorPyMem_FreefrexpPyLong_FromUnsignedLongPyNumber_MultiplyPyFloat_TypePyType_IsSubtypePyLong_AsLongAndOverflowPyLong_FromLongPyNumber_LshiftPyLong_FromDoublePyErr_Formatatan2_PyObject_LookupSpecialPyObject_CallFunctionObjArgsPyType_ReadyPyExc_TypeErrorPyLong_AsDoublePyErr_ExceptionMatchesPyErr_Clear_PyLong_FrexpsqrtPyNumber_TrueDivideldexpceilacoscopysignPyInit_mathPyModule_Create2PyModule_AddObject_Py_dg_infinity_Py_dg_stdnan_Py_expm1_Py_atanh_Py_asinh_Py_acoshlibm.so.6libpython3.6m.so.1.0libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5|@ii
ui	l ui	Mui	 t t   }ȳ } _~ } } } }h }p     }ȴ oش    } 0   } 0    }( u08 ` @ ~H ]0X   ` }h zx   ~ E0 `  ~ @n   }ȵ pص @  } b   } *0    ~( +8  @ ~H t-X  ` ~h e-x `  } pj    $~ 0   *~ȶ /ض @  /~ S   9~ [    #}( -8 ` @ ?~H pOX  ` }h Hx    [~ V-   I} PE `  @}ȷ U5ط    8} 3 `  E~ x    N~( D8 @ @ T~H EX  ` }h kx `  Z~ G- `  } e @  a~ȸ /ظ   g~ <   m~ r    r~( @8  @ (}H uX  ` w~h +x `  } p^   } / `  ~ȹ `ع    ~ /   	~ /    ~( @X8 @        ( 0 8 "@ #H %P -X .` /h 2p 5x 8 : > ? E a F G H Jȟ KП M؟ P Q R T V   ( 0 8 @ 	H 
P X ` 
h p x          Ƞ Р  ؠ ! $ & ' ( ) * + ,  0( 10 38 4@ 6H 7P 9X ;` <h =p @x A B C D I L N O S UHHx HtH5x %x @%x h%x h%x h%x h%x h%zx h%rx h%jx hp%bx h`%Zx h	P%Rx h
@%Jx h0%Bx h %:x h
%2x h%*x h%"x h%x h%x h%
x h%x h%w h%w h%w hp%w h`%w hP%w h@%w h0%w h %w h%w h%w h%w h %w h!%w h"%w h#%w h$%zw h%%rw h&%jw h'p%bw h(`%Zw h)P%Rw h*@%Jw h+0%Bw h, %:w h-%2w h.%*w h/%"w h0%w h1%w h2%
w h3%w h4%v h5%:t f%Zt f%Zt f%Zt f%bt f%t f%t f%t f%t f%t f%t f
W1Wf.f(v,HHtLYH5UH=EUYXX^HBUH
T^XXHHhu^f(HH>f.VztYVHD$HD$t1HHHf.HVztYLVHD$HD$t1HHD$?D$!uH
r H5PH9Q"u8
V0UTf.w1Hr H5yPH:Hyr H8)HUHSH!f.qUzt'D$HD$Ճ;f(t/D$HD$t$L$
L$uHf([]H1[]HH5kHH5m\HH5\
MHH5
>SHH5OH@dH%(HD$81LL$0LD$ u1
H|$  H|$0D$f(D$VTf.D„u%\$f.DuD$t-HtD$tD$)L$D$HD$tt,D$euD$Vu!;u
D$$D$iHL$8dH3%(tHH@[f(H$$tIWf.v
f(HAd$$Q,$t$!f.zAu?(S=f($$u&Wf.w	R!RHHHo H5p 1HHo H5o 1HHro H5o HHWo H5o 1yHH?o H5o 1aHH'o H5Ho FHHo H55o +HHn H5n 1HHn H5n 1HHn H5ro 1HHn H5*o 1HHn H5"o 1H(f(D$MR
QT
f(XL$,.R^QH
Ml$Hc4ZQ)T$Hf(Y(T$w\-<Qf(Yw(T$[P\Y(T$?\-Qf(Y?(T$W \f(YL(T$Pt$TV5mQH(Yf(f(H(L$
T$f(ud$tDT$d$f.z5u32Pf.r%Wf.h2!DPPf(-;PTPf.vf(MPWf(d$\$#|$f(O\Xt$\ODD$\wOEWfE(D\$DL$D\=OfE.DYEXvafA(D|$DD$TODd$D$fA({D-ZODt$D\l$D\E\fE(fA(D|$L$f(tD$"f(H(HxHHHT$PWdH%(HD$h1HD$`5NH$H
 LL$@LD$0H0IHD$1t$PD$`D$Q1Ʌd$PL$d$f.wl$`f.l$(vH=j H5LH?1T$0\$@f.zuH
j Hf(\$ T$u!|$ f(DD$ DL$tH
|j H_fE(Dd$E\D-NEYETETfE.s$EYETfE.sDl$(1fE.@HHHL$hdH3%(tHxSHH5GH@dH%(HD$81LL$0LD$ u1qH|$ NH|$0D$>f(D$Lf.D„uB\$f.Du.D$Mt.5!Md$Tf(HtlD$t
Ll$Tf((L$D$HD$st&D$duLD$Uu=!;D$t,D$?tD$0t";u
D$D$3HL$8dH3%(tH@[f(ظWYf(K- K%KY^\XuUSH(t$L$\$|$HK(W4DD$+DL$EYDYD^KH([]fA(f(HL$\$u`0KJTf.vf(f(JJ\0\$9Wl$f.w5*J\f(f(Hf(HL$l$uVJJTf.v
f(Hl$
Wd$-If.v\\f(f(Hf(H($!$u)f($f(Wf.ygWf.D$z.u,$T$!TIVJf(:f($D$fA.zQuO|$fA.vH!%HIfA.rA,HEHc5^I-HATf.v3=HA^f(<$QD$fA(qf.5Hv?D$fA.vfA(W^f(PC[H"8D
HfD(fA.EXfE(vD\E\
E\D\DY"HDd$fE.E^D\$f(DT$t$l$$f(D
HDT$D^$D$E^DYfA(DL$#D\$Dd$D^$D-GDt$EYfD.E\D$v \
<GfA(b4$^D=GfA(DYfA(\
|G/4$^^f(D$t$xD4$D$fA(D|$#GD^D$L$D$AYf.AX$v!\
FfA($$f(Y3=^FfA(Yf(\
Ft$Yf(Yf(4$$f(t$"H(HH5WHf(tF
FTf.f(vX$f.Ef(,$zf(tFf(l$$4$|$\5UEf(Y^f(\%6Ef(Hf(H($,$t
f(XEf(D)$Tf.rD!%Ff(f.ww5Df(l$\f.Xv&Yf(^XDD$YD^f(YDDD$fE(T$DT
EAVH(H8f(DD$T)T$L$ uD$d$ tDl$fA(AX-&ED$f.f.%Evf(+XEf.%CD$f(YvLCd$ X/DL$ DoCAXfE(EXD^EXfA(DBCd$(Xt$ X%C|$ DD$(^f(AXDd$TD$DT%CAVH8f(H$gD$tfA(AXBfA.f(vB!fD.Cr1fA(D$XD$ufA(XCfD.zfD.IBvKfA(DD$$AY\l$<$HXf(X^\f(dD\fA(D$fA(AXAYX|$$HXRWHfH(HdH%(HD$1$f.tAf({cf(T$d$H|$D$NHD$dH3%(uTL$H=;H(suD$vHL$utf(L$d$t
d$f(d$\$f(tHHD$dH3%(fTAuf(H=q;H(1HT$dH3%(uH(\$d$uHD$dH3%(if(f(H=;H(fDf(HL$D$tf.?v>H T$f(uf.?w?!Hzu?!ېf.f(H$.$tfWf.vFf(Hf($$uf.'?whP?!H\$$E$$l$!f.zu
?
?AUAATIUHSHhf.>D$HHH9D$$$u6$^uZ$tur$HL[]A\A]D$uH=[ H58H?H1[]A\A]D$tEtH
[ H58H9$tD$$<'H@HH4f.={uHHcyuD$HD$t1Hf.HHf.4={HHc)uD$HD$t1Hf.H8HH57dH%(HD$(1HL$ HT$tvH|$HHD$tbH|$ HHHD$ H|$vH|$HHQHHt5H|$ LMQMLtIHL$(dH3%(uH81H-HD$HGP0H|$ HD$H7HLFMLuL_HD$AS0H|$HH/uHWHD$R0HL$Df.`<fD(Jf(fEW<2YD-;fE(;fA(fD(DXNDXXAYfD(EYDXDXXfE(DYAYDYAYDXE\fD(XDXD\f(fA(EYXEYAYEYf(\fA(\fA(XYXYA\YfD(YA\DXXXfE(DYfD(YDYfD(DXYDXD\D\XfE(EYEYfD(EYEYDXD\D\fA(EYfE(AYE\A\DXXEYfD(EYDXfA(fA(YAYA\A\oUSH(DT$d$l$$4$H:(fWJ|$+DL$D\$A^AYY^=:H([]f(fW@f.AWHAVAUATUSHdH%(H$x1THH=fWLd$p :Ml$Hl$@E1Hl$f)\$HIl$f(\$Hf)\$ l$I/D$L$f(D$ f)D$ L$#HMl$f(\$ KtLE1t$@:f(f(fTfTf.wvfD(DXDD$XDL$XD\DL$`DT$`A\|$hD\$hfD.t$hHM{H9Ctt$XtvMvfDfD(DXDl$XDt$XD\Dt$`D|$`A\t$hD$hf.zfWf.uHt$XH9MfDf.f(l$ f)\$0t$T$l$ f(\$0L9MwCTfEWfE.Ht$XH9wt$E1f.ofWf.aMBHl$D\$@fD.Ml$XInEdHHDd$XDl$XIEtfE(EXD|$XD$XA\D$`L$`D\Dt$ht$hf.MtlD\$hfA.Dd$hfD.vLGlfD.v>Dt$hD|$XEXD$XEXfA(\L$`|$`fD.D$X7IH+u
HsHV0M9LH$xdH34%(mHĈ[]A\A]A^A_fC.lbA$f(MtT$XIC\f(Xd$XDD$XD\DD$`DL$`A\\$hDT$hfD.fD.#D|$XD$H^HQ H5/E1H:HI9HH9M9l$f)\$ T$tEH4LHHT$l$f(\$ tWID$@IyH<pHt*JHL(T$Hl$f(\$ L
P H5.I9E1D$f)\$ l$\d$fD(D$ uWD$fD)D$ d$sl$f(\$ tDL$HDXL$DL$HDT$@DXT$DT$@!LMP H53.E1I:+IGLP0f(D$ L$G1|LwLgDf.H(HdH%(HD$1df.2f(f(L$C\$u[f(\$uHf.f2{<H|$f(>HD$dH3%(ut$H=-H( uD$HD$dH3%(ut$f(H=X-H(iQD$hHT$uWf(T$~\$uf(\$\$yf.1{2f(H|$of(`1HT$dH3%(;H(u6@AUHIH)ATHUSHHH@HIH@LGL9vsMhIL9vfIhIH9vYIHHH9vLMHHL9v?MP
IL9v2MXIL9v%IIL9vIIL9wH[]A\A]L$8IIL$HHIȽIMI@IMtwI@IMthI@IMtYH@HHtJH@HHt;H@HHt,I@	I	MtH
@
HtHHuHL|HHt|HLLfHHtkHHH}IHOHHMu2LMHAQ0LMZMLu(HCHP0LH[]A\A]H+u
HSHR0LE1E1HmuHuHV0f.AWAVAUATUSHH(H~H5K dH%(HD$1H9&Ht$H1IIT$LMImqHHLHE1HLAHHLAHHMAIMtvMAIMtgMAIt\MAIMtMMAIMt>MAIMt/LA	HHt IA
MtAIIIEuIIܿLDHHHHLELHt_MIMtNM²IMt@MòIMt2LHHt$MDzIMtIMtfHIuHH|HHHD$H|$IH/HOQ0MJH+uLCHAP0LLHHI,$AIt$ILV0It3HDLHILHIIHI
LI/uMOLAQ0MVAM!tLIBAI!t=MzAM!t1IjAI!t%IRAI!tIzAI!t
IJII!uLL)HI_HH[MIIpHI6uMnLAU0LMQMLL[HAS0LHt$dH34%(H([]A\A]A^A_f.IIILH@HcfKf(L$T$t`f(T$\$f.zEuCf(HHt}Ht$HGHmIHEHP0IYHG H5)H:1LLI,$uMl$LAU0H+u
HCHP01kH=G H5)H1H?1Hp@L=&K<|H-
G H5)H}"1^f.ATUHSH~HtKH5[ H,HH1H1dHHHPHHugHKHQ0H[]A\[xHH5`[ HHIt:1H1I4$HH~HI<$uMD$LAP0H1HfDHHuLMLF H5(1IQI:S뽐UHSHH(dH%(HD$1HGH(f(f.H56H9f($_$fWf.v=f(HT$dH3%(uH([]HYE 1;D$${D$DT$!fE.uoDF(fA(f($D$ufD.'wD(!T$$3H$H
D H9d$$$~Ht$H,$f.{I$'H*|$YD$DX,H=D H5!H?41u$H$t1HyH9u<f($$fWf.f(RfD(f(fD(D&f.ATUSHH5X HHHIHHoHf.Q&D$xH=H;=C HuD$fWL$f.f($uZ$$tDE$H[]A\#D$]$;tD$,uL
YB H5* I9rHH[]A\l$!f.zAu?Dq%D$fA($eD$6D
*%D$fA(Z11H1zI$HHQHI$`ID$LP0Pfmf.H0fH5H;5A HD$#t'fW\$f.f($D$u9d$f.%$$$f(|=4$!<$f(`t$4$f(Lff.SHHsf.#D$!H#H;A HuwD$F`fWL$f.f($uW$Ic$t
3$H[D$$$tD$uH
? H5H9H1[l$!f.D"D$$gHuHHH;? :D$	t'fW\$f.bf($D$u]d$f.%!$$="!<$D$D
!D$t$4$fSHHCf.!D$!HH;? HuwD$`fWL$f.f($uW$c$t
3$H[D$$$tD$quH
= H5oH9H1[l$!f.D D$$ZgHuHHH;= :D$t'fW\$f.bf($D$u]d$f.%$$=!<$D$cD
D$t$4$fSHHf.cD$!HH;4< HuwD$`fWL$f.f($uW$c$t
3$H[ZD$G$$PtD$AuH
n; H5?H9H1[l$!f.DD$$*gHuQHHH;: :D$t'fW\$f.bf(X$D$cu]d$f.%$$=!<$D$3D
D$t$4$fATHH5USH@dH%(HD$81LL$ LD$HD$ \H\$HCH{]HD%fD(fA.fA(D$b$fWf.,f(f(f(HHvH|$ HHL$8dH3%(H<H@[]A\Hf(D$f.GD$IDD$fD.afA(Y$o2$$[A$$HH}@H5LHHtUHHH3IH~HH;uLCHAP0LMMQMLUL]HLAS0H+u
HCHP01t$4$$tuU$tA<$t$u$>HH-|$<$D$*uHW7 H5(H:plD$$苿,$d$!f.z|uzb$H$$=$I調t9A$!$$u31D$P%A$!1$$f($!$f.T葾y!D$Cl$f.-,$GuUDd$$vHD,$Dt$H
5 D4$H9;辿Ht$0H$f.{p!$H*|$0YX$HA$!zuD
D$LDqD$gu$調H$-qfA(D,$ǽD<$fA(D<$虽$]SHHsf.D$HHH;c4 D$$$#u1$euP$t3uc$H[޿D$uH
4 H5H9)H1[D$ƼtH4 H5H:$tD$_$H:H@f.UHH5SHHdH%(HD$81HL$0HT$ 1%H|$0HGHt$虽HHL$L$ f.
jf(L$ͻL$1HsH D$Hf(T$軻\$uq}u$f(AHT$8dH3%(HH[]Ã!_"@%L-fTf.wLs2 H5I:T1E"貼HuL$L$ f.
{gf(L$ºL$t*HpH|L$ƺfT
L$\$f.uH1 H5VH:薺1fT
gfV
L$褹\$"HHHIL1 I8Ź1}L
0 H5I91`ATUSHH5RE HH6HHUHIHqf.D$H5!H;5B1 HD$$$!u<$c$t
;$H[]A\鱸D$ָuL0 H5
I8HL[]A\D$ͻ$p8D[H%fE11H1]HMIHQHHUuHEHP0$腼HzD$;L@f.SHHf.SD$zHHH;+/ uD$$$跷u4$$觷t;ug$H[oD$tuH. H5rH:躷H1[D$?$|HH:$_tD$cfSHH5H@dH%(HD$81LL$0LD$ x=H|$ 趸H|$0D$覸f(D$f.D„/\$f.DH5H;5- Hu`L$D$D$D$%ugD$f;urD$HL$8dH3%(u.H@[l$d$fT-fT%fVl$D$诵u;D$蠵u,!D$͹{1D$脵u]D$jt"H1<fSHH dH%(HD$1HFtCH~H(
Hf.{A%зHT$dH3%(fu H [H, H51H0u$L$gH$tH+ H:>D$$趵Ht$Hٴ$f.{I$wH*\$YX$=H
S+ H5$	H9l1%u$ɵH$t1HPF H=BF UH)HHw]H* Ht]@HF H=F UH)HHHH?HHu]H_+ Ht]H@=E u'H=_+ UHtH=b( }h]E @f.H=0( t&H* HtUH=( H]WKf.UHH5SHHdH%(HD$81LL$0LD$ gH|$ 襴H|$0D$蕴f($f.D„Fd$f.D.D$Zt[$LtMñ$D$H$ 8蓱8$vD$Hұ|$D$$9
t$DfTfA.fWD$fD.vfA.UD$fA.fD.Dd$DcfD.fEWD$
E!$81HL$8dH3%(uHH[]$ưu$$|$f.=
z
u!"D$fW,$u$kp$
fTf)\$41fEW%
fD(|$f.$@DfA.ʼnwj<$fA.{JD,$L$fT
$T$f.5
$u-
,$t$4$DD$fETD$ifEW1D4$D=
fE.KD$fD.	z)u'D	D$-H&Dd$D$$fHHf.D	{HHc9uD$蜰HD$t1Hf.H$f(L$蘮uP$芮uB$̮D$uv轮u2$f.zt!L$$HdHo	L$fTfV
m	f.
{7$fTfV	f(Gu($fT&	fVn	u$$fTf(=	l$fTfV-	f.-zu4$fTfV5	f(OD$fDTfDVfA(1f.SHH5H@dH%(HD$81LL$0LD$ خH|$ H|$0D$f(D$Lf.D„\$f.DPL$D$HD$蛬u5D$ܬub;uED$hHL$8dH3%(u=H@[D$Wu<D$Hu-!D$ut1fD$+uڭH<1D$t"fDSH=(8 训HHR襮H5pHH膮H5HHgH55HHխ1训IH5HH跭1+H5HH虭H[@f.`{uHHmath domain errormath range errorfmodpow(dd)dd|$dd:isclosehypotOO:gcdintermediate overflow in fsummath.fsum partials-inf + inf in fsum(di)atan2logdO:ldexpcopysignpitau__ceil____floor__brel_tolabs_tol__trunc__mathacosacoshasinasinhatanatanhceildegreeserferfcexpm1fabsfactorialfloorfrexpisfiniteisinfisnanlgammalog1plog10log2modfradianssqrttruncȲx_7a(s(;LXww0uw~Cs+|g!??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{A]v}ALPEA뇇BAX@R;{`Zj@'
@tolerances must be non-negativefactorial() only accepts integral valuesfactorial() argument should not exceed %ldfactorial() not defined for negative valuestype %.100s doesn't define __trunc__ methodExpected an int as second argument to ldexp.@9RFߑ?cܥL@?@ƅoٵy-DT!	@??#B;E@HP?&.>>@kﴑ[?9@7@i@E@-DT!	a@?iW
@-DT!@?-DT!?!3|@-DT!?-DT!	@ffffff?0>A9B.?;,DHpp,r0H`éx. ԫ7O(j@Xpͬ pd8P
p͸X	ܸsb0p@`@0 PXp(	p			
@H



 (0X@0PPzRx$PpFJw?;*3$"Dv\VFD `
E\||FD `
E\D 4ADD0i
EAEDCAg^U4L$LCkAXPPA,tAUD`
AAA,zD0
E
EV
AEhH c
Et
AH d
EtH e
Ex
AL4H8BED D(D@
(D ABBBi
(C ABBA",%D%\%t%%%#D0(H0غFD [
H^FD [
H^$FD [
H^D~D$dAXPAкD@
A,bAD@hAA,TAAD@YAAˬH }$9|H v
ExDH0LdxBEB B(A0A8G
8A0A(B BBBA$lD0
Ew
E
AL#BKD A(G0
(A ABBF,
(A ABBAL,%BBB B(A0A8G`
8A0A(B BBBK$|CD c
EL
A$zAXP
AA,BAD U
ABA,@vADG@
AAD,mDDxBAA Q0
 AABHB
 DABA,.AG 
AEG
CA,.AG 
AEG
CA,.AG 
AEG
CA4iBUA D`
 AABH,T("AG 
AEi
CA,(AKD`
AAADBAA Q0
 AABEi
 DABA,AG 
AEi
CA$,	AXP
AA$T	xHAG0^
AA|	A	D 	(	sH0	JUD@P$
7H 
]q
IGtt MWl|8'
|  op@
 ("x	ooo0o v'''''''''((&(6(F(V(f(v((((((((())&)6)F)V)f)v)))))))))**&*6*F*V*f*v******This module is always available.  It provides access to the
mathematical functions defined by the C standard.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool

Determine whether two floating point numbers are close in value.

   rel_tol
       maximum difference for being considered "close", relative to the
       magnitude of the input values
    abs_tol
       maximum difference for being considered "close", regardless of the
       magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
is, NaN is not close to anything, even itself.  inf and -inf are
only close to themselves.isinf(x) -> bool

Return True if x is a positive or negative infinity, and False otherwise.isnan(x) -> bool

Return True if x is a NaN (not a number), and False otherwise.isfinite(x) -> bool

Return True if x is neither an infinity nor a NaN, and False otherwise.radians(x)

Convert angle x from degrees to radians.degrees(x)

Convert angle x from radians to degrees.pow(x, y)

Return x**y (x to the power of y).hypot(x, y)

Return the Euclidean distance, sqrt(x*x + y*y).fmod(x, y)

Return fmod(x, y), according to platform C.  x % y may differ.log10(x)

Return the base 10 logarithm of x.log2(x)

Return the base 2 logarithm of x.log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.modf(x)

Return the fractional and integer parts of x.  Both results carry the sign
of x and are floats.ldexp(x, i)

Return x * (2**i).frexp(x)

Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.trunc(x:Real) -> Integral

Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.factorial(x) -> Integral

Find x!. Raise a ValueError if x is negative or non-integral.fsum(iterable)

Return an accurate floating point sum of values in the iterable.
Assumes IEEE-754 floating point arithmetic.tanh(x)

Return the hyperbolic tangent of x.tan(x)

Return the tangent of x (measured in radians).sqrt(x)

Return the square root of x.sinh(x)

Return the hyperbolic sine of x.sin(x)

Return the sine of x (measured in radians).log1p(x)

Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.lgamma(x)

Natural logarithm of absolute value of Gamma function at x.gamma(x)

Gamma function at x.floor(x)

Return the floor of x as an Integral.
This is the largest integer <= x.fabs(x)

Return the absolute value of the float x.expm1(x)

Return exp(x)-1.
This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp(x)

Return e raised to the power of x.erfc(x)

Complementary error function at x.erf(x)

Error function at x.cosh(x)

Return the hyperbolic cosine of x.cos(x)

Return the cosine of x (measured in radians).copysign(x, y)

Return a float with the magnitude (absolute value) of x but the sign 
of y. On platforms that support signed zeros, copysign(1.0, -0.0) 
returns -1.0.
ceil(x)

Return the ceiling of x as an Integral.
This is the smallest integer >= x.atanh(x)

Return the inverse hyperbolic tangent of x.atan2(y, x)

Return the arc tangent (measured in radians) of y/x.
Unlike atan(y/x), the signs of both x and y are considered.atan(x)

Return the arc tangent (measured in radians) of x.asinh(x)

Return the inverse hyperbolic sine of x.asin(x)

Return the arc sine (measured in radians) of x.acosh(x)

Return the inverse hyperbolic cosine of x.acos(x)

Return the arc cosine (measured in radians) of x.gcd(x, y) -> int
greatest common divisor of x and y}}_~}}}}}  }o  }0 }0 }u0` ~]0  }z ~E0` ~@n }p@ }b }*0 ~+ ~t- ~e-` }pj  $~0 *~/@ /~S 9~[ #}-` ?~pO }H  [~V- I}PE` @}U5  8}3` E~x N~D@ T~E }k` Z~G-` }e@ a~/ g~< m~r r~@ (}u w~+` }p^ }/` ~`  ~/ 	~/ ~@X@ math.cpython-36m-x86_64-linux-gnu.so.debugg07zXZִF!t/y]?Eh=ڊ2N	)1%jLn͂*.wӸZf5XV`U/?ǯ3
zE(P&P6e]>[@'L/`]7Jmz{d!
3zo؍+x<P[Ia&wpAh#6\N6‡;*efC[v
C
	y`МκI1lOCd/)C)\$IZʟ[E"-Ttއ9A}X(BkI$jH8:joY.%KpmBdU^|\a?L'4ވٰ#lrʂzn?ϻva%C!>}of#Yiy60PQdAfr<B•5gD+ø
	c:rIۭjWJqL`^O|Ư-ır0Ky_4¯B0`kHqqS;uPه1Aۼ/>roDci=ϭxs
'g3gx&&>:e=Qg/2q2 W@Q+puTҩ%/	}eV*>;>X#mf^j{*!wዎm͓z)]-<C{x5A+Õ
Banu]փ(sJˆ0XFtnT('P\JhEm݅Μno'rLN7mW6hY$F3ON#~|k)g3-\reF$Y%T+ZO-$+u_lCWEI`Gϼ8$T$y  
\jRxQأ'}ސai"9 VS@NFٮӟl?x{{;!K0K<Tc~B9w}?5aA}E8+wƵ0m]fRt2..|x r%:z5k~&$:\!BR95v;E+.2hrGL!:zc}3o ?`;~
u^SӍd^/✊㾬g׀cDoF]lݟ7S"%yF4r^僂c6!ԝs^+LŠ:0"+8uF&IL )CUc oNl]{eU_p_bazXDtd =Gntwxunu,9ɶPvv_;A.I"%K;WP`H}!|9M:̮gU(K-<$bLf<?k-[)VgYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.data.rel.ro.dynamic.got.plt.data.bss.gnu_debuglink.gnu_debugdata$oP(@@0	0pp8o00EoTxx^B("("h8'8'c`'`'pn**Xw0+0+Q}||	}} ,,
     r    ` ``0L

OHA YOOOO